THERMAL MICROHABITAT AND THE OBSERVED AESTIVATION TEMPERATURES OF THE MUD TURTLE Kinosternon chimalhuaca (CHELONIA: KINOSTERNIDAE)
DOI:
https://doi.org/10.22201/fc.25942158e.2024.4.976Keywords:
Dormancy, Thermal niche, Thermal ecology, Freshwater turtles, Tropical environment, Underwater temperatureAbstract
The thermal niche is the temperature conditions that affect the life history and ecology of any species. Studying how species respond to thermal niche is crucial to understanding their adaptability to the environment. Demographic characteristics of the mud turtle Kinosternon chimalhuaca have been recently evaluated, but information on many ecological aspects is still unknown. Here, we explored the thermal niche temperatures of K. chimalhuaca during a seasonal period of drought. We measured, recorded, and compiled information on body, selected microhabitat and environmental temperatures in active turtles of an aquatic site and compared this information with the microhabitat and environmental temperatures perceived by aestivating turtles in a terrestrial site. The body temperature in active turtles was 24 °C, selected temperatures in the lab were between 23-25 °C, minimal voluntary temperatures of 22 °C and maximal voluntary temperatures of 28 °C. The range temperatures in the underwater microhabitat were 23-28 °C. Temperatures in the microhabitat for aestivation (inside forest) were 15 to 25 °C. Thermal conditions outside the forest (soil temperatures) were higher than the temperatures in the microhabitat used for aestivation. Temperatures in the shallow water were relatively lower than the air temperatures recorded around the aquatic habitat. In addition to facultative aestivation of K. chimalhuaca, our data show different thermal conditions between activity and dormancy microhabitats with the potential to be favorable regarding the surrounding temperatures of environment
References
Akins, C.D., C.D. Ruder, S.J. Price, L.A. Harden, J.W. Gibbons & M.E. Dorcas. 2014. Factors affecting temperature variation and habitat use in free-ranging diamondback terrapins. Journal of Thermal Biology 44:63-69.
Angilletta, M. 2009. Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford University Press, Oxford, UK.
Berriozabal-Islas, C.S. 2018. Efecto del cambio climático sobre dos grupos de ectotermos: Testudines (tortugas género Kinosternon) y Squamata (lagartijas género Xenosaurus), basado en su conservadurismo del nicho climático y térmico. Tesis de Doctorado. Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo. Mineral de la Reforma, Hidalgo, México.
Berriozabal-Islas, C., A. Ramírez-Bautista, F. Torres-Ángeles, J.F. Mota Rodrigues, R. Macip-Ríos & P. Octavio-Aguilar. 2020. Climate change effects on turtles of the genus Kinosternon (Testudines: Kinosternidae): an assessment of habitat suitability and climate niche conservatism. Hydrobiologia 847:4091-4110.
Berry, J.F., M.E. Seidel & J.B. Iverson. 1997. A new species of mud turtle (genus Kinosternon) from Jalisco and Colima, Mexico, with notes on its natural history. Chelonian Conservation and Biology 2:329-337.
Bowers, B.C., D.K. Walkup, T.J. Hibbitts, P.S. Crump, W.A. Ryberg, A.M. Lawing & R.R. Lopez. 2021. Should I stay or should I go? Spatial ecology of western chicken turtles (Deirochelys reticularia miaria). Herpetological Conservation and Biology 16:594-611.
Buckley, L.B., J.C. Ehrenberger & M.J. Angilletta. 2015. Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change. Functional Ecology 29:1038-1047.
Buckley, L.B., R.B. Huey & J.G. Kingsolver. 2022. Asymmetry of thermal sensitivity and the thermal risk of climate change. Global Ecology and Biogeography 31:2231-2244.
Bullock, S.H. 1986. Climate of Chamela, Jalisco, and trends in the south coastal region of Mexico. Archives for Meteorology, Geophysics, and Bioclimatology, Series B 36:297-316.
Cagle, F.R. 1939. A system of marking turtles for future identification. Copeia 1939:170-173.
Casas-Andreu, G. 2002. Kinosternon chimalhuaca Berry, Seidel and Iverson 1997. Casquito, Casquito de Burro. Pp. 267-268. En: F.A. Noguera, J.H. Vega-Rivera, A.N. García Aldrete & M. Quesada-Avendaño (Eds.), Historia Natural de Chamela. Instituto de Biología, Universidad Nacional Autónoma de México. México D.F., México.
Chandler, H.C., B.S. Stegenga & D.J. Stevenson. 2020. Thermal ecology of Spotted Turtles (Clemmys guttata) in two southern populations. Copeia 108:737-745.
Dahlke, F.T., M. Butzin, J. Nahrgang, V. Puvanendran, A. Mortensen, H.O. Pörtner & D. Storch. 2018. Northern cod species face spawning habitat losses if global warming exceeds 1.5 °C. Science Advances 4:eaas8821.
Davis, M.B., R.G. Shaw & J.R. Etterson. 2005. Evolutionary responses to changing climate. Ecology 86:1704-1714.
Fitzgerald, L.A. & R.E. Nelson. 2011. Thermal biology and temperature-based habitat selection in a large aquatic ectotherm, the alligator snapping turtle, Macroclemys temminckii. Journal of Thermal Biology 36:160-166.
Garrido, J.R., T. Butterfield, A.G. Scoville, R. Macip-Ríos & D.D. Beck. 2021. Comparing semi-urban and forest populations of the Jalisco mud turtle (Kinosternon chimalhuaca) in Mexico. Herpetological Review 52:725-729.
Gibbons, J.W., J.L. Greene & J.D. Congdon. 1983. Drought-related responses of aquatic turtle populations. Journal of Herpetology 17:242-246.
Grayson, K.L. & M.E. Dorcas. 2004. Seasonal temperature variation in the painted turtle (Chrysemys picta). Herpetologica 60:325-336.
Haskins, D.L. & T.D. Tuberville. 2022. Metabolic responses to increased temperatures in three semi-aquatic turtle species from the southeastern United States. Journal of Thermal Biology 109:103331.
Hertz, P.E., R.B. Huey & R.D. Stevenson. 1993. Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. The American Naturalist 142:796-818.
Jiang, C., K.B. Storey, H. Yang & L. Sun. 2023. Aestivation in Nature: Physiological Strategies and Evolutionary Adaptations in Hypometabolic States. International Journal of Molecular Sciences 24:14093.
Legler, J.M. & R.C. Vogt. 2013. The Turtles of Mexico. Land and Freshwater Forms. University of California Press. Berkeley, California, USA.
Ligon, D.B. & C.C. Peterson. 2002. Physiological and behavioral variation in estivation in mud turtles (Kinosternon spp.). Physiological and Biochemical Zoology 75:283-293.
Litzgus, J.D. & R.J. Brooks. 2000. Habitat and temperature selection of Clemmys guttata in a northern population. Journal of Herpetology 34:178-185.
Lownds, R.M., C. Turbill, T.E. White & K.D. Umbers. 2023. The impact of elevated aestivation temperatures on the behaviour of bogong moths (Agrotis infusa). Journal of Thermal Biology 113:103538.
Macip-Ríos, R., T. Butterfield & E. Raya-García. 2023. How aestivation evolved in turtles: a macroevolutionary and morphological approach. Evolutionary Biology 50:381-394.
Macip-Ríos, R., R. Ontiveros, S. López-Alcaide & G. Casas-Andreu. 2015. The conservation status of the freshwater and terrestrial turtles of Mexico: a critical review of biodiversity conservation strategies. Revista Mexicana de Biodiversidad 86:1048-1057.
McKnight, D.T. & D.B. Ligon. 2020. Estivation site selection of western chicken turtles (Deirochelys reticularia miaria). The Southwestern Naturalist 64:187-194.
Moll, E.O. & J.M. Legler. 1971. The life history of a Neotropical slider turtle, Pseudemys scripta (Schoepff), in Panama. Bulletin of the Los Angeles County Museum of Natural History 11:1-102.
Osborne, T.R. & J.C. Wright. 2018. Seeking refuge in subsurface microhabitats during aestivation aids avoidance of lethally high temperature and desiccation in the snail Helminthoglypta tudiculata (Binney, 1843) (Pulmonata: Helminthoglyptidae). Journal of Molluscan Studies 84:132-140.
R Core Team. 2019. R: A language and environment for statistical computing. v4.0.5. Retrieved from https://www.R-project.org/
Raya-García, E., T.G. Butterfield, J. Garrido, C. Anaya-Merchant, D. Antelo-Barbosa, R. López-Vivanco, M. Sánchez-Salazar, J.J. Zúñiga-Vega & R. Macip-Ríos. 2025. Life history and demography of the mud turtle Kinosternon chimalhuaca in a drainage ditch from an urban area in Jalisco, Mexico. Herpetological Journal, Accepted.
Roe, J.H., A. Georges & B. Green. 2008. Energy and water flux during terrestrial estivation and overland movement in a freshwater turtle. Physiological and Biochemical Zoology 81:570-583.
Sinervo, B., R.A. Lara-Reséndiz, D.B. Miles, J.E. Lovich, P.C. Rosen, H. Gadsden, G. Casteñada Gaytán, P. Galina Tessaro, V.H. Luja, R.B. Huey, A. Whipple, V. Sánchez Cordero, J.B. Rohr m, G. Caetano, J.C. Santos, J.W. Sites Jr. & F.R. Méndez de la Cruz. 2024. Climate change and collapsing thermal niches of desert reptiles and amphibians: assisted migration and acclimation rescue from extirpation. Science of the Total Environment 908:168431.
Storey, K.B. 2002. Life in the slow lane: molecular mechanisms of estivation. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 133:733-754.
Storey, K.B. & J.M. Storey. 2012. Aestivation: signaling and hypometabolism. Journal of Experimental Biology 215:1425-1433.
Tuff, K.T., T. Tuff & K.F. Davies. 2016. A framework for integrating thermal biology into fragmentation research. Ecology Letters 19:361-374.
Wilsterman, K., M.A. Ballinger & C.M. Williams. 2021. A unifying, eco‐physiological framework for animal dormancy. Functional Ecology 35:11-31.
Withers, P. & C. Cooper. 2010. Metabolic depression: a historical perspective. Pp. 1-23. En C. Navas & J. Carvalho (Eds.), Aestivation: Molecular and Physiological Aspects. Springer, Berlin Heidelberg, Germany.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Latinoamericana de Herpetología

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.