USO DE INDICADORES BIOCLIMÁTICOS PARA ANALIZAR LA PRESENCIA DE DESAJUSTES CLIMÁTICOS EN LOS ENSAMBLES LOCALES DE ANFIBIOS EN AMÉRICA
DOI:
https://doi.org/10.22201/fc.25942158e.2025.1.902Palabras clave:
Anura, Cambio climático, Conservación, Deuda climática, HylidaeResumen
Las especies se enfrentan de forma constante al aumento de la temperatura en las últimas décadas. Esto conduce a un desequilibrio entre las tolerancias térmicas de las comunidades de especies y la magnitud del calentamiento climático. En los casos donde las especies no logran adaptarse a los cambios climáticos, las comunidades exhiben una respuesta retrasada y, por lo tanto, acumulan una deuda climática. La información actual sobre estos desajustes climáticos se concentra principalmente en las comunidades de plantas, insectos y aves en regiones templadas. Aquí, examinamos la variación del desajuste climático en 80 ensambles de anfibios de la familia Hylidae en todo el continente americano. Para nuestros análisis, calculamos el desajuste climático para cada ensamblaje como la diferencia entre los índices de temperatura de la comunidad (ITC) y las temperaturas históricas promedio tanto para los valores máximos como para los mínimos. Utilizando modelos mixtos lineales generalizados, evaluamos un conjunto potencial de variables predictoras ambientales que impulsan los desajustes climáticos. Las tendencias en las respuestas de los ensamblajes eran visibles y variaban según los sitios. Los valores de desajuste climático negativo se concentran en ensambles en regiones tropicales sugiriendo que en estos sitios las especies pueden enfrentar dificultades para adaptarse a las temperaturas crecientes, por lo tanto, podrían tener intervalos térmicos más bajos. Los ensamblajes en zonas templadas y subtropicales mostraron desajustes climáticos positivos, lo que sugiere un menor riesgo de extinción hasta el momento. Sin embargo, de todas las variables probadas, solo la latitud absoluta, la elevación y la velocidad climática pasada explicaron el desajuste climático para la temperatura mínimo. Estos resultados podrían sugerir que la escala de nuestra investigación fue demasiado gruesa, por lo que sugerimos que se realicen análisis adicionales a escalas regional y local, así como investigación adicional sobre la compleja naturaleza del retraso climático y las variables que dan forma al efecto de las dinámicas de retraso.
Citas
Alexander, J.M., L. Chalmandrier, J. Lenoir, T.I. Burgess, F. Essl, S. Haider, C. Kueffer, K. McDougall, A. Milbau, M.A. Nunez, A. Pauchard, W. Rabitsch, L.J. Sanders & L. Pellisier. 2018. Lags in the response of mountain plant communities to climate change. Global Change Biology 24:563-579.
Alves-Ferreira, G., D.C. Talora, M. Solé, M.J. Cervantes-López & N.M. Heming. 2022. Unraveling global impacts of climate change on amphibians’ distributions: a life-history and biogeographic-based approach. Frontiers in Ecology and Evolution 10:987237.
Amatulli, G., S. Domisch, M.N. Tuanmu, B. Parmentier, A. Ranipeta, J. Malczyk & W. Jetz. 2018. A suite of global, cross-scale topographic variables for environmental and biodiversity modelling. Scientific Data 5:1-15.
Antão, L.H, A.E. Bates, S.A. Blowes, C. Waldock, S.R. Supp, A.E. Magurran, M. Dornelas & A.M. Schipper. 2020. Temperature-related biodiversity change across temperate marine and terrestrial systems. Nature Ecology & Evolution 4:927-933.
Araujo-Vieira, K., A.C. Lourenço, J.V.A. Lacerda, M.L. Lyra, B.L Blotto, S.R. Ron, D. Baldo, M.O., Pereyra, Á.M. Suárez-Mayorga, D. Baêta, R.B. Ferreira, C.L. Barrio-Amorós,C. Borteiro, R.A. Brandão, C.A. Brasileiro, M.A. Donnelly, M.J.M. Dubeux, J. Köhler, F. Kolenc, F.S. Fortes Leite, N.M. MacIel, I. Nunes, V.G.D. Orrico, P. Peloso, T.L. Pezzuti, S. Reichle, F.J.M. Rojas-Runjaic, H.R. Da Silva, M.J. Sturaro, J.A. Langone, P.C.A. Garcia, M.T. Rodrigues, D.R. Frost, W.C. Wheeler, T. Grant, J.P. Pombal, C.F.B. Haddad & J. Faivovich. 2023. Treefrog diversity in the Neotropics: phylogenetic relationships of Scinaxini (Anura: Hylidae: Hylinae). South American Journal of Herpetology 27:1-143.
Auffret, A.G. & J.C. Svenning. 2022. Climate warming has compounded plant responses to habitat conversion in northern Europe. Nature Communications 13:7818.
Barbet-Massin, M. & W. Jetz. 2015. The effect of range changes on the functional turnover, structure, and diversity of bird assemblages under future climate scenarios. Global Change Biology 21:2917-2928.
Bates, D., M. Maechler, B. Bolker & S.Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67:48.
Bertrand, R., J. Lenoir, C. Piedallu, G.R. Dillon, P. De Ruffray, C.Vidal, J.C. Pierrat & J.C. Gégout. 2011. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479:517-520.
Bertrand, R., G.R. Dillon, J. Lenoir, J. Drapier, P.D. Ruffray, J.C. Gégout & M. Loreau. 2016. Ecological constraints increase the climatic debt in forests. Nature Communications 7:12643.
Blonder, B., D.E. Moulton, J. Blois, B. J. Enquist, B.J. Graae, M.M. Fauria, B. McGill, S. Nogue, A. Ordonez, B. Sandel & J. Svenning. 2017. Predictability in community dynamics. Ecology Letters 20:293-306.
Bonachela, J.A., M.T. Burrows & M.L. Pinsky. 2021. Shape of species climate response curves affects community response to climate change. Ecology Letters 24:708-718.
Borderieux, J., J.C. Gégout & J.M. Serra-Diaz. 2024. Extinction drives recent thermophilization but does not trigger homogenization in forest understorey. Nature Ecology & Evolution 8:695-704.
Bowler, D. & K. Böhning-Gaese. 2017. Improving the community-temperature index as a climate change indicator. PloS ONE 12:e0184275.
Brown, J.L., D.J. Hill, A.M. Dolan, A.C. Carnaval & A.M. Haywood. 2018. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Scientific Data 5:1-9.
Corlett, R.T. & D.A. Westcott. 2013. Will plant movements keep up with climate change? Trends in Ecology & Evolution 28:482-488.
Daufresne, M., K. Lengfellner & U. Sommer. 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106:12788-12793.
Deutsch, C.A., J.J. Tewksbury, M. Tigchelaar, D.S. Battisti, S.C. Merrill, R.B. Huey & R.L. Naylor. 2018. Increase in crop losses to insect pests in a warming climate. Science 361:916-919.
Devictor, V., R. Julliard, D. Couvet & F. Jiguet. 2008. Birds are tracking climate warming, but not fast enough. Proceedings of the Royal Society B: Biological Sciences 275:2743-2748.
Devictor, V., C. Van Swaay, T. Brereton, L. Brotons, D. Chamberlain, J. Heliölö, S. Herrando, R. Julliard, M. Kuussaari, Å. Lindström, J. Reif, D.B. Roy, O. Schweiger, J. Settele, C. Stefanescu, A. Van Strien, C. Van Turnhout, Z. Vermouzek, M. WallisDeVries, I. Wynhoff & F. Jiguet. 2012. Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change 2:121-124.
Dillon, M.E., G. Wang & R.B. Huey. 2010. Global metabolic impacts of recent climate warming. Nature 467:704-706.
Diniz-Filho, J.A. F., L. Jardim, T.F. Rangel, P.B. Holden, N.R. Edwards, J. Hortal, A.M.C. Santos & P. Raia. 2019.Quantitative genetics of body size evolution on islands: An individual-based simulation approach. Biology Letters 15:20190481.
Duan, R.Y., X.Q. Kong, M.Y. Huang, S. Varela & X.J. 2016. The potential effects of climate change on amphibian distribution, range fragmentation and turnover in China. PeerJ 4: e2185.
Duchenne, F., G. Martin & E. Porcher. 2021. European plants lagging behind climate change pay a climatic debt in the North but are favoured in the South. Ecology Letters 24:1178-1186.
Feder, M.E. & J.F. Lynch. 1982. Effects of latitude, season, elevation, and microhabitat on field body temperatures of neotropical and temperate zone salamanders. Ecology 63:1657-1664.
Feeley, K.J., C. Bravo-Avila, B. Fadrique, T.M. Perez & D. Zuleta. 2020. Climate-driven changes in the composition of new world plant communities. Nature Climate Change 10:965-70.
Fei, S., J.M. Desprez, K.M. Potter, I. Jo, J.A. Knott & C.M. Oswalt. 2017. Divergence of species responses to climate change. Science Advances 3:e1603055.
Fick, S.E. & R.J. Hijmans. 2017.WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37:4302-4315.
Gardner, J.L., A. Peters, M. R. Kearney, L. Joseph & R. Heinsohn. 2011. Declining body size: a third universal response to warming? Trends in Ecology & Evolution 26:285-291.
Govaert, S., P. Vangansbeke, H. Blondeel, K. Steppe, K. Verheyen, y P. D. Frenne. 2021. Rapid thermophilization of understorey plant communities in a 9 year-long temperate forest experiment. Journal of Ecology 109:2434-2447.
Greenberg, D.A. & W.J. Palen. 2021. Hydrothermal physiology and climate vulnerability in amphibians. Proceedings of the Royal Society B: Biological Sciences 288:20202273.
Harris, I., T.J. Osborn, P. Jones & D. Lister. 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data 7:109.
He, Y., Z. Liao, X. Chen & Y. Chen. 2023. Climatic debts for global amphibians: who, where and why? Biological Conservation 279:109929-109929.
Herrando-Pérez, S., D.R. Vieites & M.B. Araújo. 2023. Novel physiological data needed for progress in global change ecology. Basic and Applied Ecology 67:32-47.
Hoffmann, E.P., K.L Cavanough & N.J. Mitchell. 2021. Low desiccation and thermal tolerance constrains a terrestrial amphibian to a rare and disappearing microclimate niche. Conservation Physiology 9:coab027.
Karger, D.N., O. Conrad, J. Böhner, T. Kawohl, H. Kreft, R.W. Soria-Auza, N.E. Zimmermann, H.P. Linder & M. Kessler. 2017. Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4:1-20.
Kerr, J.T., A. Pindar, P. Galpern, L. Packer, S.G. Potts, S.M. Roberts, P. Rasmont, O. Schweiger, S.R. Colla, L.L. Richardson, D.L. Wagner, L.F. Gall, D.S. Sikes & A. Pantoja. 2015. Climate change impacts on bumblebees converge across continents. Science 349:177-180.
Kitudom N., S. Fauset, Y. Zhou, Z. Fan, M. Li, M. He, S. Zhang, K. Xu & H. Lin. 2022. Thermal safety margins of plant leaves across biomes under a heatwave. Science of the Total Environment 806:150416.
Lawler, J.J., S.L Shafer & A.R. Blaustein. 2010. Projected climate impacts for the amphibians of the Western hemisphere. Conservation Biology 24:38-50.
Le Galliard, J.F., D. Rozen-Rechels, A. Lecomte, C. Demay, A. Dupoue & S. Meylan. 2021. Short-term changes in air humidity and water availability weakly constrain thermoregulation in a dry-skinned ectotherm. PLoS ONE 16:e0247514.
Lenoir J., R. Bertrand, L. Comte, L. Bourgeaud, T. Hattab, J. Murienne & G. Grenouillet. 2020.
Species better track climate warming in the oceans than on land. Nature Ecology & Evolution 4:1044-1059.
Lertzman-Lepofsky, G., A.M. Kissel, B. Sinervo & W.J. Palen. 2020. Water loss and temperature interact to compound amphibian vulnerability to climate change. Global Change Biology 26:4868- 4879.
Loarie, S.R., P.B. Duffy, H. Hamilton, G.P. Asner, C.B. Field & D.D. Ackerly. 2009. The velocity of climate change. Nature 462:1052-1055.
Luedtke, J.A., J. Chanson, K. Neam, L. Hobin, A.O. Maciel, A. Catenazzi, A. Borzée, A. Hamidy, A. Aowphol, A. Jean & A. Sosa-Bartuano. 2023. Ongoing declines for the world’s amphibians in the face of emerging threats. Nature 622:308-314.
Mitchell, A. & P.J. Bergmann. 2016. Thermal and moisture habitat preferences do not maximize jumping performance in frogs. Functional Ecology 30:733-742.
Namkhan, M., G.A. Gale, T. Savini & N. Tantipisanuh. 2021. Loss and vulnerability of lowland forests in mainland Southeast Asia. Conservation Biology 35:206-215.
Navas-Martín, M., J.A. López-Bueno, J. Díaz, F. Follos, J. Vellón, I. Mirón, M. Luna, G. Sánchez- Martínez, D. Culqui & C. Linares. 2022. Effects of local factors on adaptation to heat in Spain (1983-2018). Environmental Research 209:112784.
Pacheco-Riaño, L.C., F.H. Schei, S. G.A. Flantua & J.A. Grytnes. 2023. Lags in the response of plant assemblages to global warming depends on temperature-change velocity. Global Ecology and Biogeography 32:719-733.
Pecl, G.T., M.B. Araújo, J. D. Bell, J. Blanchard, T.C. Bonebrake, I.C. Chen, T.D. Clark, R.K. Colwell, F. Danielsen, B. Evengard, L. Falconi, S. Ferrier, S. Frusher, R.A. Garcia, R.B. Griffis, A.J. Hobdat, C. Janion-Scheepers, M.A. Jarzyna, S. Jennings, J. Lenior, H.I. Linnetved, V.Y. Martin, P.C. McCormack, J. McDonald, N.J. Mitchell, T. Mustonen, J.M. Pandolfi, N. Pettorelli, E. Popova, S.A. Robison, B.R. Scheffers, J.D. Shaw, C.J. Sorte, J.M. Strugnell, J.M. Sundau, M.N. Tuanmu, A. Verges, C. Villanueva, T. Wernberg, E. Wapstra & S.E. Williams. 2017. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355: eaai9214.
Piquer-Rodríguez, M., V. Butsic, P. Gärtner, L. Macchi, M. Baumann, G. Gavier Pizarro, J.N. Volante, I.N. Gasparri & T. Kuemmerle. 2018. Drivers of agricultural land-use change in the Argentine Pampas and Chaco regions. Applied Geography 91:111-122.
Polato, N.R., B.A. Gill, A.A. Shah, M.M. Gray, K.L. Casner, A. Barthelet, P.W. Messer, M.P. Simmons, J.M. Guayasamin, A.C. Encalada, B.C. Kondratieff, A.S. Flecker, S.A. Thomas, C.K. Ghalambor, N. LeRoy Poff, W. Chris Funk & K.R. Zamudio. 2018. Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proceedings of the National Academy of Sciences of the United States of America 115:12471-12476.
Potapov, P., Li, X., A. Hernandez-Serna, A. Tyukavina, M.C. Hansen, A. Kommareddy, A. Pickens, S. Turubanova, H. Tang, C.E Silva, J. Armston, R. Dubayah, J.B. Blair & M. Hofton. 2021. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sensing of Environment. 253:112165.
Pottier, P., H.Y. Lin, R.R.Y. Oh, P. Pollo, A.N. Rivera-Villanueva, J.O. Valdebenito, Y. Yang, T. Amano, S. Burke, S.M. Drobniak & S. Nakagawa. 2022. A comprehensive database of amphibian heat tolerance. Scientific Data 9:1-15.
RStudio Team. 2023. R Core Team. R: a Language and Environment for Statistical Computing. R, Foundation for Statistical Computing, Vienna, Austria. .
Richard, B., J.-L. Dupouey, E. Corcket, D. Alard, F. Archaux, M. Aubert, V. Boulanger, F. Gillet, E. Langlois, S. Mace, P. Montpied, T, Beaufils, C. Begeot, P. Behr, J. Boissier, S. Camaret, R. Chevalier, G. Decocq, Y. Dumas, R. Eynard-Machet, J. Gegout, S. Huet, V. Malecot, P. Margerie, A. Mouly, T. Paul, B. Renaux, P. Ruffaldi, F. Spicher, E. Thirion, E. Ultrich, M. Nicolas & J. Lenoir. 2021. The climatic debt is growing in the understorey of temperate forests: stand characteristics matter. Global Ecology and Biogeography 30:1474-1487.
Rosenblad, K.C., K.C. Baer & D.D. Ackerly. 2023. Climate Change, tree demography, and thermophilization in western US forests. Proceedings of the National Academy of Sciences of the United States of America 120:e2301754120.
Scheffers, B.R., L. De Meester, T.C.L. Bridge, A.A. Hoffmann, J.M. Pandolfi, R.T. Corlett, S.H.M. Butchart, S.H.M., P. Pearce-Kelly, K.M. Kovacs, D. Dudgeon, M. Pacifici, C. Rondinini, W.B. Foden, T.G. Martin, C. Mora, D. Bickford & J.E.M. Watson. 2016. The broad footprint of climate change from genes to biomes to people. Science 354: aaf7671.
Schivo, F., M.C. Mateo-Sánchez, V. Bauni & R.D. Quintana. 2020. Influence of land-use/land-cover change on landscape connectivity for an endemic threatened amphibian (Argenteohyla siemersi pederseni, Anura: Hylidae). Landscape Ecology 35:1481-1494.
Sinai, N., J. Glos, A.V. Mohan, M.L. Lyra, M. Riepe, E. Thöle, C. Zummach & K. Ruthsatz. 2022. Developmental plasticity in amphibian larvae across the world: investigating the roles of temperature and latitude. Journal of Thermal Biology 106:103233.
Smith, M.A. & D.M. Green. 2005. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110-128.
Stevens, J.T., H.D. Safford, S. Harrison & A.M. Latimer. 2015. Forest Disturbance Accelerates Thermophilization of Understory Plant Communities. Journal of Ecology 103:1253-1263.
Stephens, P.A., L.R. Mason, R.E. Green, R.D. Gregory, J.R. Sauer, J. Alison, A. Aunins, L. Brotons, S.H. Butchart, T. Campedelli, T. Chodkiewicz, P. Chylarecki, O. Crowe, J. Elts, V. Escandell, R.P. Foppen, H. Heldbjerg, S. Herrando, M. Husby, F. Jiguet, A. Lehikoinen, A. Lindström, D.G. Noble, J.Y. Paquet, J. Reif, T. Sattler, T. Szép, N. Teufelbauer, S. Trautmann, A.J. van Strien, C.A. van Turnhout, P. Vorisek & S.G. Willis. 2016. Consistent response of bird populations to climate change on two continents. Science 352:84-87.
Stewart, J.R. 2009. The evolutionary consequence of the individualistic response to climate change', Journal of Evolutionary Biology 22:2363-2375.
Stuart, S.N., M. Hoffmann, J.S. Chanson, N.A. Cox, R. Berridge, P. Ramani & B.E. Young. 2008. Threatened Amphibians of the World. IUCN, Conservation International, Lynx Edicions, Arlington, Virginia, USA.
Subba, B., S. Sen, G. Ravikanth & M.P. Nobis. 2018. Direct modelling of limited migration improves projected distributions of Himalayan amphibians under climate change. Biological Conservation 227:352-360.
Sunday, J.M., A.E. Bates & N.K. Dulvy. 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society B: Biological Sciences 27:1823-1830.
Sunday, J.M., A.E. Bates, M.R. Kearney, R.K. Colwell, N.K. Dulvy, J.T. Longino & R.B. Huey. 2014. Thermal-safety margins and the necessity of thermoregulatory behaviour across latitude and elevation. Proceedings of the National Academy of Sciences of the United States of America 111:5610-5615.
Svenning, J.C. & B. Sandel. 2013. Disequilibrium vegetation dynamics under future climate change. American Journal of Botany 100:1266-12186.
Tuanmu, M.N. & W. Jetz. 2015. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and Biogeography 24:1329-1339.
Villaseñor, N.R., D.A. Driscoll, P. Gibbons, A.J.K. Calhoun & D.B. Lindenmayer. 2017. The relative importance of aquatic and terrestrial variables for frogs in an urbanizing landscape: key insights for sustainable urban development. Landscape and Urban Planning 157:26-35.
Wiens, J.J., R.A. Pyron & D.S. Moen. 2011. Phylogenetic origins of local-scale diversity patterns and the causes of Amazonian megadiversity. Ecology Letters 14:643-652.
Withers, P.C., S.S. Hillman & R.C. Drewes. 1984. Evaporative water loss and skin lipids of anuran amphibians. Journal of Experimental Zoology 232:11-17.
Zellweger, F., P.D. Frenne, J. Lenoir, P. Vangansbeke, K. Verheyen, M. Bernhardt-Römermann, L. Baeten, R. Hedl, I. Berki, J. Brunet, H.V. Calster, M. Chudomelova, G. Decocq, T. Dirnbock, T. Durak, T. Heinken, B. Jaroszewicz, M. Kopecky, F. Malis, M. Macek, M. Malicki, T. Naaf, T.A. Nagel, A. Ortmann-Ajnai, P. Petriz, R. Pielech, K. Reczynska, W. Schmidt, T. Standovar, K. Swierkosz, B. Teleki, O. Vild, M. Wulf & D. Coomes. 2020. Forest Microclimate Dynamics Drive Plant Responses to Warming. Science 368:772-775.
Zumbado-Ulate, H., C.L. Searle, G. Chaves, V. Acosta-Chaves, A. Shepack, S. Salazar & A. García- Rodríguez. 2021. Assessing suitable habitats for treefrog species after previous declines in Costa Rica. Diversity 13:577.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Revista Latinoamericana de Herpetología

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.